Wadge hierarchy of omega context-free languages

نویسنده

  • Olivier Finkel
چکیده

The main result of this paper is that the length of the Wadge hierarchy of omega context-free languages is greater than the Cantor ordinal 0, and the same result holds for the conciliating Wadge hierarchy, de1ned by Duparc (J. Symbolic Logic, to appear), of in1nitary context-free languages, studied by Beauquier (Ph.D. Thesis, Universit9 e Paris 7, 1984). In the course of our proof, we get results on the Wadge hierarchy of iterated counter !-languages, which we de1ne as an extension of classical (1nitary) iterated counter languages to !-languages. c © 2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Length of the Wadge Hierarchy of Omega-Context Free Languages

We prove in this paper that the length of the Wadge hierarchy of ω-context free languages is greater than the Cantor ordinal εω, which is the ω th fixed point of the ordinal exponentiation of base ω. We show also that there exist some Σ0ω-complete ω-context free languages, improving previous results on ω-context free languages and the Borel hierarchy.

متن کامل

Topological Complexity of Context-Free omega-Languages: A Survey

We survey recent results on the topological complexity of context-free ω-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non-deterministic or deterministic context-free ω-languages. We study also decision problems, the links with the notions of ambiguity and of degrees of amb...

متن کامل

Borel Ranks and Wadge Degrees of Context Free omega-Languages

We show that the Borel hierarchy of the class of context free ω-languages, or even of the class of ω-languages accepted by Büchi 1-counter automata, is the same as the Borel hierarchy of the class of ω-languages accepted by Turing machines with a Büchi acceptance condition. In particular, for each recursive non null ordinal α, there exist some Σ α -complete and some Π α -complete ω-languages ac...

متن کامل

J an 2 00 8 On the length of the Wadge hierarchy of ω - context free languages ∗

We prove in this paper that the length of the Wadge hierarchy of ω-context free languages is greater than the Cantor ordinal εω, which is the ω th fixed point of the ordinal exponentiation of base ω. We show also that there exist some Σ0ω-complete ω-context free languages, improving previous results on ω-context free languages and the Borel hierarchy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 269  شماره 

صفحات  -

تاریخ انتشار 2001