Wadge hierarchy of omega context-free languages
نویسنده
چکیده
The main result of this paper is that the length of the Wadge hierarchy of omega context-free languages is greater than the Cantor ordinal 0, and the same result holds for the conciliating Wadge hierarchy, de1ned by Duparc (J. Symbolic Logic, to appear), of in1nitary context-free languages, studied by Beauquier (Ph.D. Thesis, Universit9 e Paris 7, 1984). In the course of our proof, we get results on the Wadge hierarchy of iterated counter !-languages, which we de1ne as an extension of classical (1nitary) iterated counter languages to !-languages. c © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
On the Length of the Wadge Hierarchy of Omega-Context Free Languages
We prove in this paper that the length of the Wadge hierarchy of ω-context free languages is greater than the Cantor ordinal εω, which is the ω th fixed point of the ordinal exponentiation of base ω. We show also that there exist some Σ0ω-complete ω-context free languages, improving previous results on ω-context free languages and the Borel hierarchy.
متن کاملTopological Complexity of Context-Free omega-Languages: A Survey
We survey recent results on the topological complexity of context-free ω-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non-deterministic or deterministic context-free ω-languages. We study also decision problems, the links with the notions of ambiguity and of degrees of amb...
متن کاملBorel Ranks and Wadge Degrees of Context Free omega-Languages
We show that the Borel hierarchy of the class of context free ω-languages, or even of the class of ω-languages accepted by Büchi 1-counter automata, is the same as the Borel hierarchy of the class of ω-languages accepted by Turing machines with a Büchi acceptance condition. In particular, for each recursive non null ordinal α, there exist some Σ α -complete and some Π α -complete ω-languages ac...
متن کاملJ an 2 00 8 On the length of the Wadge hierarchy of ω - context free languages ∗
We prove in this paper that the length of the Wadge hierarchy of ω-context free languages is greater than the Cantor ordinal εω, which is the ω th fixed point of the ordinal exponentiation of base ω. We show also that there exist some Σ0ω-complete ω-context free languages, improving previous results on ω-context free languages and the Borel hierarchy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 269 شماره
صفحات -
تاریخ انتشار 2001